
Navigation

Homepage

Services

Portfolio

Industries

Azati Blog

Career

About Azat

Advanced Scraping
Platform for Cellular
Data Extraction
Our team developed an advanced scraping platform to help the customer
receive daily phone call statistics. The solution consists of several scraping
scripts that extract information from web UI with Selenium.

CUSTOMER:

If you are a business owner or a manager, you want to control the productivity of the sales
department or call-center from anywhere.

Imagine a call center receiving and transmitting a large volume of inquiries. There is a
considerable number of phone numbers from various providers, and each number can be
used by several operators simultaneously. That is why it is quite complicated to track the

quality of calls made by each employee, considering the amount of incoming or outgoing
requests.

Our client manages such a call center, and it is impossible to integrate any call tracking or
monitoring software into the existing infrastructure. It was necessary to collect cellular
statistics in another way.

A considerable number of companies collect data to check service quality. If someone
collects all the data manually, this person spends a lot of time doing routine work. There is
specific software that can reduce the time spent on doing manual actions. But if you want to
extract information about phone calls, the task becomes much more sophisticated.

Telecommunication providers store the list of calls and call history. Most often, it is stored in
various databases as structured or semi-structured data. It is quite tricky to collect, process,
systematize, and analyze this information. This is why there are several issues related to record
matching and linking.

In our particular case, each provider had a dashboard where a user can see brief information
about one cellphone number: bandwidth usage, call records, current balance, etc. If a
company had hundreds of phone numbers, days needed for a regular person to manually
collect the required information.

The customer wanted us to automate data extraction to cut down general costs, as there
were several employees responsible for collecting this data.

OBJECTIVE:

The customer had already built a partially functioning MVP, but still, several employees were
collecting and analyzing all the data manually. The previous vendor had successfully
created five scrapers, one per each provider. The customer wanted us to finalize the
application.

However, there were several issues with code quality and general performance – the
solution worked incredibly slow. It did not provide the required insights by itself, as data
required additional post-processing. Therefore, ongoing maintenance and monitoring are
essential for scrapers to work effectively.

Since the project start, we were responsible for software improvements, feature
development and bug fixing. As the previous vendor developed MVP two years ago, there
was an issue with outdated technologies, and some algorithms also required significant
tuning.

There were several challenges our team faced during the process.

#1
CHALLENGE #1:

 
There were several issues with the existing scripts, and our customer
requested a quick fix as soon as possible. One day the provider
rolled out a new user interface, and scripts naturally stopped
working. That’s why the existing solution required timely ongoing
updates.

In general, web scraping is a long and resource-intensive process,
and it requires day-to-day monitoring. The improvement of the
scraping algorithms should go in line with the development of
authorization bypassing algorithms.

#1 Our daily responsibility became checking out whether scripts are
still able to work in the current technological environment.

CHALLENGE #2:

 
The same time as data collection became automated, several
significant constraints came into sight. The more pages we parsed,
the more time it took algorithms to process the data. With the
increase of phone numbers, the number of pages to parse also
began to grow. Hence it caused the problem with the lack of
processing power and storage.

As this issue popped from time to time, it was easily fixed – we
moved the solution to a high-performance dedicated server and
set up a flexible resource orchestrator. #2

#3
CHALLENGE #3:

 
Another issue was related to application performance.

The customer wanted us to provide the daily statistics generated by
the solution. It means that the data collection and processing
should be fast enough. It was a bit complicated to manage as the
number of phone numbers was increasing over time.

Even today, we cannot guarantee 100% coverage as there are some
issues with performance. But now our solution covers about 96% of
all numbers required by the customer. Every month helps us to
understand the pitfalls of the process and find out possible
optimizations.

PROCESS:

As we mentioned earlier, there were five scrapers responsible for data collection: one per
each provider. Later our engineers rebuilt one from scratch.

Our team passed through three critical phases while building a web scraper:

01. Passing authentication and authorization:
The scraper was designed to draw account data; that’s why passing the authorization was
critical. The customer provided us a spreadsheet with usernames (where phone number is
a username) and passwords. This information helped the tool login under the guise of a
regular user into operators’ profile.

As login and password are required for a successful sign in, there are possible
vulnerabilities related to this authentication method. If a third-party person knows the
password, he can control the account. Providers worry about the safety of user data, so
they built-in two-factor authentication.
More and more websites and services are wiling to use a two-factor authentication.
According to proponents, this approach drastically reduces the probability of online identity
theft and other online fraud. The victim’s password would no longer be enough to give a
thief permanent access to their information.

As there was a considerable amount of cell numbers within the organization, asking
everyone to provide us the SMS-code was a time-consuming and annoying process.

In order not to distract operators from work, our team built an intercepting module to pass
a two-factor authentication automatically. It was working in the background, intercepting
SMS from the provider and forwarding it to our email.

02. Building the scraper:
When a web scraper signed in, we can collect all the information from the account. Script
downloaded the HTML code into the cache and extracted the required information
according to XPath.

THE SCRAPPER COLLECTED:
The number of calls

Calls duration

Whether the call was accepted

Whether the client called back to the operator

Whether the operator called back to the customer

How much calls were accepted by the operator

Calls recordings

How much traffic was spent

03. Matching the data and reports generation:
Every day our business analyst receives the list of phone numbers customer wants us to
check. Our engineers created an embedded database where the authorization information
was matched to the corresponding phone number.

When the data collection is finished, a support specialist generates a CSV file and sends it
to the customer. We do so, as web scrapers do not have any user interface, but it is a highly
requested feature.

SOLUTION:

THE APPLICATION IS A GROUP OF INTERCONNECTED SCRIPTS, THAT
CAN BE DIVIDED INTO SEVERAL MODULES:

Authentication
module to

bypass two-
factor

authentication

01

Five scrapers to
execute the

data extraction

02

Small script to
analyze and

match scraped
data

03

Once per day, the customer receives a report with all the required information.

TECHNOLOGIES:

         

SCREENSHOTS:

RESULTS:

The project is not completed yet. Since the project has started, our team accomplished the
following tasks related to feature development and ongoing updates:

THE CUSTOMER HAS THE OPPORTUNITY TO:

01

OUR ENGINEERS
REBUILT, TESTED, AND
SUCCESSFULLY
LAUNCHED A STABLE
VERSION OF A SCRAPER 02

OUR SUPPORT
SPECIALIST PROVIDES
DAILY STATISTICS TO
THE CUSTOMER

03

WE BUILT A MODULE
THAT CAN BYPASS
TWO-FACTOR
AUTHENTICATION
AUTOMATICALLY

  Track the number and quality of calls made by each employee;

Receive the call recordings;

Track the quality of incoming calls (who is the operator and how many calls he received; how

many calls were missed, the average duration of a call);

View statistics of the incoming calls;

View the average traffic consumption;

How much calls were accepted by the operator

NOW:

Today our team is maintaining web scrapers, improving the stability of the system, as well
as adding new features.

As the scraping process requires constant attention and day-to-day tuning, it is hardly
possible for us to train someone without a specific technical background to do this work on
site. This is why our engineers do everything possible to automate this process in order to
help the customer cut down maintenance costs.

https://azati.ai/
https://azati.ai/case-studies/
https://azati.ai/azati-blog/
https://azati.ai/career/



